Tag Archives: contact form

Symplectic and contact manifolds

Let (M,\omega) be a symplectic manifold. It said to be exact if \omega=d\lambda for some one-form \lambda on M.

(1) If \omega=d\lambda is exact, then there is a canonical isomorphism between the v.f. and 1-forms. In particular, there exists a v.f. X such that \lambda=i_X\omega. Then we have \lambda(X)=\omega(X,X)=0, and L_X\lambda=i_X d\lambda+d i_X\lambda=i_X\omega +0=\lambda, and L_X\omega=d i_X\omega=d\lambda=\omega.

(2) Suppose there exists a vector field X on M such that its Lie-derivative L_X\omega=\omega (notice the difference with L_X\omega=0). Then Cartan’s formula says that \omega=i_X d\omega+ di_X\omega=d\lambda, where \lambda=i_X\omega. So \omega=d\lambda is exact, and L_X\lambda=i_Xd\lambda+di_X\lambda=i_X\omega+0=\lambda.

Continue reading


Short notes

8. (Alejandro) Let f:X\to X be an arbitrary transitive homeomorphism and u:X\to(0,1/4) be an arbitrary non-constant continuous function. Then, let’s define c(x):=u(x)-u(fx)+1, x\in X, and consider the suspension flow f_t:X_c\to X_con X_c. Note that for each x\in X and t\in(0,1/4): f_1(x,t+u(x))=(x,t+u(x)+1)=(x,t+u(fx)+c(x))=(fx,t+u(fx)). So the compact set \lbrace(x,t+u(x)):x\in X\rbrace is f_1-invariant for every t\in(0,1/4), and f_1 is not transitive. Notice the function c is not constant because f is transitive and u is not constant itself.

Continue reading